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We propose a modification of the Mackey-Glass respiration control model taking into account the activity of
the brain respiration center. In contrast to the original Mackey-Glass model, the modified one allows one to
obtain complex solutions correspondent to irregularly looking breathing patterns, which are observed in the
case of pathological (Cheyne-Stokes) respiration; in addition, it describes the increase of frequency of respi-

ratory motions in the case of pathology.

PACS number(s): 87.10.+e¢, 5.45.+b

In recent years, modeling of different human physiologi-
cal rhythms and their analysis by methods of nonlinear dy-
namics have aroused considerable interest. Respiratory
rhythm, reflecting one of the most important physiological
functions of the human organism, has attracted the attention
of researchers as an interesting phenomenon of complex os-
cillatory behavior in a living system and because of its rel-
evance to practical medicine.

One of the types of pathological breathing, known as
Cheyne-Stokes, or periodical, respiration, indicates severe,
life-threatening pathology. It is also observed in healthy sub-
jects in specific conditions (insufficiency of oxygen, e.g. high
in the mountains). One of the reasons for the appearance of
Cheyne-Stokes respiration is, apparently, violation of blood
circulation giving an increase of duration of travel of blood
from the lungs to the brain. The respiration is called periodic
because of the alternation of short periods of deep and more
frequent (as compared to the normal case) breathing with its
complete cessation, termed apnoe. Correspondingly, the level
of carbon dioxide in the blood oscillates, too. Both the enve-
lope of breathing patterns and the number of breaths in each
pattern are irregular [1-3], as is illustrated by Fig. 1 redrawn
from [1].

As is known [2,4], the respiratory rhythm originates in a
special center located in the brain stem. This central genera-
tor can work autonomously, without afferent signals, but nor-
mally it is influenced by several feedback loops. The control
variables are levels of CO, and O, and the pH of the blood,
and mechanical variables (level of lung stretch, stiffness of
the muscles incorporated into respiration, and so on) mea-
sured by corresponding receptors in the structure surround-
ing the lungs. The chemical parameters are analyzed by spe-
cial anatomic structures in the brain stem, which are called
hemoreceptors. The finite time of blood flow determines the
delay in a closed-loop control.
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In regulation of breathing both the amplitude (depth) and
the frequency of oscillation of brain respiration centers are
changed. By doing so, the control system chooses some op-
timal values of these parameters.

The human respiratory system was modeled in a number
of works [5]. A simple dynamical model of breathing control
was proposed by Mackey and Glass [6]. In their work the
human respiration control system was considered a closed-
loop control system with time delay. It was shown that an
increase of time delay leads to an excitation of oscillations of
the level of carbon dioxide in the blood ard of lung ventila-
tion. The Mackey-Glass model does not take into account the
activity of the central rhythm generator

In the present paper we modify the Mackey-Glass model
including considering the brain respiratory center. The simu-
lation of the modified model gives solutions correspondent to
normal and pathological respiration, such as the Cheyne-
Stokes respiration. It is interesting that this model explains
the increase of frequency of breathing in a pathological case.

Mackey and Glass considered the following control
scheme. Carbon dioxide is produced in body tissues with
constant speed (for the steady-state case) and is removed via
lung ventilation. The ventilation V is defined as the volume
of air passed through the lungs during a single breath times
the frequency of respiration [7]. It is a monotonously in-
creasing function of the level of CO, in the blood at some
previous moment of time. Denoting the partial pressure of
CO; in the blood as x, they approximated the dependence of

V on x by
=
"
g
]
]
2
3
E
3 .
2
0 05 10 15 20 25 30

Time (min)

FIG. 1. Experimental record of pathological breathing taken
from [1] (see also [6]).
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FIG. 2. Solution of the Mackey-Glass equation. V is the venti-
lation of lungs, liters per second, and x is level of CO, in the blood,
mm of mercury column. Parameter values are given in the text.
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where V,,, ®, and n are parameters, x,=x(¢t— 7). As the
velocity of CO, removal is proportional to the product of x
and V, then
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where « is some coefficient. Based on the physiological
data they chose the following parameters values:
O =40x(73/7)'", V,,=4/3 liters per second, a=0.0214
17!, 7=15 s, A=0.1 mm of mercury column per second.
The parameter n was changed during simulation.

For positive x Egs. (1) and (2) have one singular point,
x=x*, which is the root of the equation A(®"+x7})
=aV,x""1 . For the above set of parameters, x* =40 mm of
mercury column. Stability of this singular point can be stud-
ied by use of the D-partition technique [8]. As a result, one
obtains that the singular point x=x* is oscillatory unstable if
V*<Sx* and

arccos[ — V*/(Sx*)]

2 2
a\Sxix* —v*

T> Top=

, 3)

where V*=V/|, _.x, S=(dV/dx,)|, =+ Close to the sta-
bility boundary the period of oscillation is

T=2mr7/arccos[ — V*/(Sx*)].

If V*<<Sx*, which is valid for the above parameter values,
then the condition (3) can be reduced to the form of
S>S,,, where S, = w/(2a7x*). The latter is equivalent to
the condition n>n,, . For the presented values of the param-
eters, n.,~46.59 and the period of oscillations close to the
stability boundary is approximately equal to 4 7. The results
of integration of Egs. (1) and (2) for n=62.62 are shown in
Fig. 2. The solution obtained reminds one of the envelope of
lung ventilation for Cheyne-Stokes respiration [6]. However,
contrary to the experimental data, this solution is periodic.
Let us now take into account the rhythm of the central
generator. This rhythm defines the frequency f of separate
breaths. During each breath cycle the air flow through the

Time (s)

FIG. 3. Solution of Egs. (4) and (5) for the value of time delay
=3 s (r<7,) and v=0.0009 Hz (mm Hg)~!. This solution cor-
responds to respiration in the healthy state. V; is the instantaneous
ventilation of lungs, liters per second.

lungs increases from zero to some maximal value with inspi-
ration and decreases back to zero during expiration [2].
Hence, for the constant level of CO,, the instantaneous ven-
tilation V; is a non-negative function periodic with period
1/f. We suppose that it can be modeled as

V;=V(1+cos2mft).

Averaging of this function over time gives a slowly varying
function V like the one presented in Fig. 2. Respectively,
instead of Egs. (1) and (2) we consider the following equa-
tion:

O axVy =T (14cos2 @
i AN TaxV, ®"+x’,'( cos2ft).

The dependence of the respiration rate on the level of
CO, is not known exactly. Experimental studies show that,
until the tidal volume (the volume of air entering the lungs
during a single breath) is less than about half the vital capac-
ity, ventilation increases at the expense of depth of breathing
while the frequency remains nearly constant [9]. In order to
describe the frequency control feedback loop, we suppose
that frequency of the central generator f weakly depends on
the level of CO, at some previous moment of time, and that
the purpose of this control is to maintain the constant level of
CO, in the blood, x=x*. We also assume that this depen-
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FIG. 4. Solution of the model in the absence of frequency feed-
back loop; 7=15 s. The frequency of respiration is practically the
same as in the healthy state (approximately one breath per 4 s).
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FIG. S. Several three-minute irregular breathing patterns gener-
ated by the model (a). The lowest from these four plots corresponds
to oscillation of the CO, level x (b). Parameter values are 7=15 s
and »=0.0009 Hz (mm Hg) 1.

dence can be linearized in the neighborhood of x*. It means
that we consider small modulations of the frequency of the
central generator:

f=fotv(x,—x%), ®

where v<<1 is parameter of modulation, and the frequency of
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FIG. 6. Dependence of the mean respiration frequency f,, Hz,
on the coefficient in the frequency control feedback loop v,
Hz (mm Hg)~! for 7=12 s (triangles), 7=15 s (asterisks), and
7=18 s (rectangles).

shown below, this small modulation leads, nevertheless, to a
nontrivial effect.

We simulated Egs. (4) and (5) using the above parameter
values from the works of Mackey-Glass, taking fo=1/4 Hz
and changing the parameter v from Eq. (5) [10]. For
7<7,, and v varying from zero until at least 0.005 we ob-
tained a result correspondent to normal breathing: ventilation
is periodical in time and the level of CO, in the blood is
practically constant and equal to x* (Fig. 3). For 7> 7, and
v=0 (no modulation) we observed a quasiperiodic regime
with the basic frequencies f, and 1/47 (Fig. 4). We note that
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FIG. 8. One of the projections of the attractor of the system
[Egs. (4) and (5)] in the case of absence (upper plot, »=0) and
presence (v=0.0009) of modulation.
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the respiration frequency corresponds to the healthy case.
For 7> 7., and v>0 we observed irregularly looking breath-
ing patterns, typical for the case of Cheyne-Stokes respira-
tion (Fig. 5).

Let us note that high-frequency oscillation of the variable
V; practically does not manifest itself in variation of x, as
Egs. (2) and (4) resemble the equation of the detector (de-
modulator). From Fig. 5 we can see that frequency of respi-
ratory motions is approximately two times higher than in the
normal case. This fact cannot be explained only by modula-
tion of the frequency of the central generator, described by
Eq. (5). Really, with the chosen parameter values, this varia-
tion is of the order of several percent only. Apparently, the
detected considerable increase of frequency is caused by a
combination of nonlinearity, time delay, and modulation. In
order to show it, we calculated the averaged frequency of
breathing f;,=1/T, as a function of v, where T, is the mean
interval between two successive breaths, for different values
of time delay 7. This dependence is shown in Fig. 6. From
this picture we can see that f,/f, depends both on modula-
tion and time delay, increasing with an increase of each of
these parameters.

The found 7=15 s and

solution for v=0.0009

Hz (mm Hg) ™! seems to be chaotic [as one can suppose
from the time plot (Fig. 7) and a projection of the attractor of
the system, Egs. (4) and (5) (Fig. 8)], although it can be
quasiperiodic. It would be interesting to find out whether the
Cheyne-Stokes respiration is really a chaotic or regular pro-
cess (in any case it is certainly disturbed by noise), but be-
cause of the high noise level in measurements it is hardly
possible to answer this question by means of analysis of
experimental data [3]. It is very complicated and time con-
suming to obtain an exact answer to similar questions from
simulated data. At the same time, it is not essential for the
purpose of the presented study.

In summary, we have considered and investigated numeri-
cally a modification of the Mackey-Glass respiration control
model. As a result we observed breathing patterns which are
similar to the experimental data presented in the literature.
An account of the frequency feedback loop allows us to de-
scribe in pathological respiration not only irregularity but
also an increase of frequency of breathing, which is observed
in reality.
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